433 research outputs found

    graphite - a Bioconductor package to convert pathway topology to gene network

    Get PDF
    BACKGROUND: Gene set analysis is moving towards considering pathway topology as a crucial feature. Pathway elements are complex entities such as protein complexes, gene family members and chemical compounds. The conversion of pathway topology to a gene/protein networks (where nodes are a simple element like a gene/protein) is a critical and challenging task that enables topology-based gene set analyses. Unfortunately, currently available R/Bioconductor packages provide pathway networks only from single databases. They do not propagate signals through chemical compounds and do not differentiate between complexes and gene families. RESULTS: Here we present graphite, a Bioconductor package addressing these issues. Pathway information from four different databases is interpreted following specific biologically-driven rules that allow the reconstruction of gene-gene networks taking into account protein complexes, gene families and sensibly removing chemical compounds from the final graphs. The resulting networks represent a uniform resource for pathway analyses. Indeed, graphite provides easy access to three recently proposed topological methods. The graphite package is available as part of the Bioconductor software suite. CONCLUSIONS: graphite is an innovative package able to gather and make easily available the contents of the four major pathway databases. In the field of topological analysis graphite acts as a provider of biological information by reducing the pathway complexity considering the biological meaning of the pathway elements

    The challenge of perioperative pain management in opioid-tolerant patients

    Get PDF
    The increasing number of opioid users among chronic pain patients, and opioid abusers among the general population, makes perioperative pain management challenging for health care professionals. Anesthesiologists, surgeons, and nurses should be familiar with some pharmacological phenomena which are typical of opioid users and abusers, such as tolerance, physical dependence, hyperalgesia, and addiction. Inadequate pain management is very common in these patients, due to common prejudices and fears. The target of preoperative evaluation is to identify comorbidities and risk factors and recognize signs and symptoms of opioid abuse and opioid withdrawal. Clinicians are encouraged to plan perioperative pain medications and to refer these patients to psychiatrists and addiction specialists for their evaluation. The aim of this review was to give practical suggestions for perioperative management of surgical opioid-tolerant patients, together with schemes of opioid conversion for chronic pain patients assuming oral or transdermal opioids, and patients under maintenance programs with methadone, buprenorphine, or naltrexone

    Impact of probe annotation on the integration of miRNA-mRNA expression profiles for miRNA target detection

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional and translational levels by an imperfect binding to target mRNA 3'UTR regions. While the ab-initio computational prediction of miRNA-mRNA interactions still poses significant challenges, it is possible to overcome some of its limitations by carefully integrating into the analysis the paired expression profiles of miRNAs and mRNAs. In this work, we show how the choice of a proper probe annotation for microarray platforms is an essential requirement to achieve good sensitivity in the identification of miRNA-mRNA interactions. We compare the results obtained from the analysis of the same expression profiles using both gene and transcript based custom CDFs that we have developed for a number of different annotations (ENSEMBL, RefSeq, AceView). In all cases, transcript-based annotations clearly improve the effectiveness of data integration and thus provide a more reliable confirmation of computationally predicted miRNA-mRNA interaction

    Gray Matter Pathology in MS: A 3-Year Longitudinal Study in a Pediatric Population

    Get PDF
    RESULTS: At T0, GMf did not differ between cMS and NC (P .18), while it was lower in patients with aMS compared with both NCs (P .001) and patients with cMS (P .001). The number of patients with CLs, as well as CL number and volume, were higher in patients with aMS than in those with cMS (P .001). At T3, -GMf was higher in both patients with cMS (1.6% 0.5%; range 0.7%–3.4%; P .001) and aMS (1.6% 0.6%; range 0.6%–3.4%; P .001) compared with NCs (0.7% 0.2%; range 0.4%–1.1%), whereas no difference was observed between patients with cMS and aMS (P .93). -GMf significantly correlated with increased CL volume (cMS: r 0.46; aMS: r 0.48) and with the appearance of new CLs (cMS: r 0.51; aMS: r 0.49). CONCLUSIONS: Our findings suggest that focal (CLs) and diffuse (atrophy) GM damage are strictly associated with the biologic onset of MS, and proceed linearly and partly independently of WM pathology. ABBREVIATIONS: aMS adult-onset multiple sclerosis; CL cortical lesion; cMS childhoodonset multiple sclerosis; EDSS Expanded Disability Status Scale; GM gray matter; GMf gray matter fraction; -GMf delta gray matter fraction; -GMf_1 delta gray matter fraction at T1; -GMf_2 delta gray matter fraction at T2; -GMf_3 delta gray matter fraction at T3; NC healthy control; T0 baseline; T2WMLV T2 white matter lesion volum

    Holographic quark matter with colour superconductivity and a stiff equation of state for compact stars

    Get PDF
    We present a holographic model of QCD with a first order chiral restoration phase transition with chemical potential, mu. The first order behaviour follows from allowing a discontinuity in the dual description as the quarks are integrated out below their constituent mass. The model predicts a deconfined yet massive quark phase at intermediate densities (350 MeV< mu <500 MeV), above the nuclear density phase, which has a very stiff equation of state and a speed of sound close to one. We also include a holographic description of a colour superconducting condensate in the chirally restored vacuum and study the resulting equation of state. They provides a well behaved first order transition from the deconfined massive quark phase at very high density (mu>500 MeV). We solve the Tolman-Oppenheimer-Volkoff equations with the resulting equations of state and find stable hybrid stars with quark cores. We compute the tidal deformability for these hybrid stars and show they are consistent with LIGO/Virgo data on a neutron star collision. Our holographic model shows that quark matter could be present at the core of such compact stars.Comment: 17 pages, 14 figure

    Revertant Fibers in the mdx Murine Model of Duchenne Muscular Dystrophy: An Age- and Muscle-Related reappraisal

    Get PDF
    Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed “revertant fibers”) positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We analyzed 11 different muscles in a cohort of 40 mdx mice, the most commonly model used in pre-clinical studies, belonging to four age groups; such number of animals allowed us to perform solid ANOVA statistical analysis. We assessed the average number of dystrophin-positive fibers, both absolute and normalized for muscle size, and the correlation between their formation and the ageing process. Our results indicate that various muscles develop different numbers of revertant fibers, with different time trends; besides, they suggest that the biological mechanism(s) behind dystrophin re-expression might not be limited to the early development phases but could actually continue during adulthood. Importantly, such finding was seen also in cardiac muscle, a fact that does not fit into the current hypothesis of the clonal origin of “revertant” myonuclei from satellite cells. This work represents the largest, statistically significant analysis of revertant fibers in mdx mice so far, which can now be used as a reference point for improving the evaluation of therapeutic approaches for DMD. At the same time, it provides new clues about the formation of revertant fibers/cardiomyocytes in dystrophic skeletal and cardiac muscle

    The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms

    Get PDF
    Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin\u2013proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg 121 i.p., daily for 10 days), a significant increase in chymotrypsin-(\u3b25) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of \u3b25 and LMP7 (\u3b25i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective \u3b25 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy

    The prevention of analgesic opioids abuse: expert opinion

    Get PDF
    Opioids are drugs of reference for the treatment of moderate to severe pain. Their proper use and a periodic assessment of the patient are crucial to prevent misuse. A multidisciplinary group suggests strategies for all stakeholders involved in the management of pain and suggests the importance of the doctor-patient relationship

    The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms

    Get PDF
    Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin–proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg−1 i.p., daily for 10 days), a significant increase in chymotrypsin-(β5) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of β5 and LMP7 (β5i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective β5 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy
    corecore